Journal of Postgraduate Medicine
 Open access journal indexed with Index Medicus & EMBASE  
     Home | Subscribe | Feedback  

[Download PDF
Year : 1994  |  Volume : 40  |  Issue : 4  |  Page : 210-5  

Therapeutic potential of the hematopoietic growth factors.

D Usha, UM Thatte, SA Dahanukar 
 Dept of Pharmacology, Seth GS Medical College, Parel, Bombay, Maharashtra.

Correspondence Address:
D Usha
Dept of Pharmacology, Seth GS Medical College, Parel, Bombay, Maharashtra.

How to cite this article:
Usha D, Thatte U M, Dahanukar S A. Therapeutic potential of the hematopoietic growth factors. J Postgrad Med 1994;40:210-5

How to cite this URL:
Usha D, Thatte U M, Dahanukar S A. Therapeutic potential of the hematopoietic growth factors. J Postgrad Med [serial online] 1994 [cited 2022 Jun 24 ];40:210-5
Available from:

Full Text

The development of semisolid culture systems in the recent past has driven home the fact that haematopoietic precursor cells proliferate and mature in vitro in the presence of stimulatory factors. These stimulatory factors were identified to be glycoproteins and their ability to stimulate precursor cells led to them being referred to as colonystimulating factors (CSFs). Subsequently, such factors for almost every haematopoietic cell lineage were discovered to exist in vivo e.g. erythropoietin for erythrocytes, interleukin2 for Tlymphocytes or macrophage  colony stimulating factor for macrophages, etc. Progress from the laboratory to the clinic was quick. This was contributed to, in a large measure, by the availability of recombinant DNA techniques, which allowed large amounts of the factors for clinical use. Today the clinical utility of some factors like erythropoietin is clearly established. The clinical status of two of the best characterised factors acting on the leucocyte series, namely granulocyte  macrophage colony  stimulating factor (GMCSF) and granulocyte colony  stimulating factor (GCSF) will be discussed in this article.

  ::   Sources and biologyTop

Native GMCSF (mol wt  23,000 Dalton) is a product of Tlymphocytes, macrophages, fibroblasts and endothelial cells. Native GCSF (mol wt  25,000 Dalton) on the other hand, is produced only by the latter three cell types[1].

The gene for GMGSF is located on chromosome 5q 21322 and that for GCSF has been localised to 17q 11.2  212. This is important in view of the fact that in several cases of refractory anaemia, deletions along the chromosome regions 5q 21  32 have been detected.

  ::   ActionsTop

GMCSF and GCSF have been found to play an important role in myelopoiesis, which is a complex series of events through which primitive selfrenewing bone marrow stem cells differentiate. These CSFs also promote cell survival by suppressing apoptosis, which is the active process of self destruction characterised by specific DNA degradation and morphological changes in CSF deprived cells.

As shown in [Figure:1], GMCSF specifically stimulates the development of neutrophils and monocytes from the granulocytes and monocyte / macrophage colonyforming units respectively. In addition, it also stimulates (though to a lesser extent) the development of eosinophils, platelets and erythrocytes. GCSF acts on the granulocyte  macrophagecolonyforming units and promotes their maturation to the granulocyte colonyforming units. GCSF further acts on these granulocyte colonyforming units to promote the formation of functionally mature neutrophils. These CSFs also stimulate the release of mature cells from bone marrow into the peripheral circulation and reduce their maturation time[3],[4].

Lymphoid series is not shown in the figure.

In addition to having a proliferative effect on progenitor cells, these CSFs also act on mature leucocytes. Thus, the expression of chemotactic receptors is increased, which enhances chemotaxis. They also induce phagocytosis and microbial killing by neutrophils at sites of infection and inflammation.

GMCSF and GCSF do not act in isolation, as is already evident from the fact that they are synergistic with respect to their effects on the granulocyte  macrophage  colony forming units. These interactions are indicative of the fact that GIVICSF facilitates lineage commitment and subsequently supports or amplifies the clonogenic activity of lineage specific GCSF.

  ::   Mechanism of actionTop

The mechanism of action of both these CSFs is &subject of ongoing research. Receptor molecules have been identified for these CSFs on haematopoietic cells.

Though the number of these receptors are surprisingly few, degradation of the receptor  ligand complex is rather slow and this contributes to sustained action of these mediator molecules. In addition to these high affinity receptors, low affinity receptors too are known to exist for rGMCSF

These CSFs have been postulated to transduce signals via the cyclic AMP and inosine triphosphate messenger pathways.

  ::   Therapeutic usesTop

Based on encouraging results obtained in animals, clinical studies were initiated to evaluate the value of these CSFs in humans. In phase I clinical trials, administration of rGCSF (recombinant GCSF) and rGMCSF (recombinant GMCSF) by the intravenous or subcutaneous route produced a dose dependent increase in segmented and immature neutrophils. In addition rGM-CSF led to an increase in monocytes and eosinophils as well. This was seen after an initial brief period of leucopenia. This leucopenia was observed 1030 minutes following administration and leucocyte recovery took place 12 hours later. The onset of and recovery from leucopenia was delayed when the CSFs were administered subcutaneously. Radionucleotide labelling studies indicate that this leucopenia is due to sequestration of leucocytes in the lungs due to increase in the production of an adhesive glycoprotein, and recovery is due to reentry of these cells into the circulating pool.

The subsequent persistent increase in leucocyte counts is due initially to enhanced egress of mature cells from the bone marrow, shortened maturation time, enhanced de-margination of intravascular neutrophils and inhibited extra vascular migration. Further elevation, with continued exposure, reflects the CSFinduced increase in proliferative traction of haemopoietic cells in the bone marrow. Examination of bone marrow 514 days after treatment reveals an increase in cellularity and in the ratios of myeloid to erythroid progenitor cells. There is also an increase in the circulating levels of granulocyte and macrophage colonyforming units. Leucocyte levels normalise within 48 hours of cessation of treatment.

There are several clinical settings where these CSFs have been used in patients. However, the studies that have been carried out so far are initial ones, mainly to establish a dose response relationship with regard to its efficacy and toxicity. Larger, randomised placebo controlled studies are required to clarity the impact of these CSFs in clinical conditions. The main uses identified so far are listed in [Table:1].

  ::   1. bone marrow transplantationTop

The basis of using CSFs in this condition is that there could be a deficient production of CSFs following transplantation which can be supplemented by administering exogenous CSFs.

rGMCSF has been more extensively used for this purpose. It has been tried in autologous and allogeneic, bone marrow transplantation. It was found to decrease the incidence of bacteremia and antibiotic use, with variable effects on platelet counts[5]. It has also been used in cases of failure of bone marrow engraftment where increase in bone marrow cellularity was observed, though there was no effect on platelet and erythrocyte production[6]. The U.S. FDA approved dosage schedule for this condition is represented in [Table:2].

rGMGSF either alone or in combination with cyclophosphamide facilitates harvest of stem cells by apheresis for subsequent transplantation, because it can increase the number of progenitor cells in the circulation[7].

rGMCSF, on the other hand has been mainly used in patients undergoing cytotoxic chemotherapy where bone marrow transplantation is carried out to overcome the dose limits of anticancer drugs[8]. It has been found to decrease the period of neutropenia and frequency of bacteremia. The dosage schedule that has been tried in clinical trials of G-CSF is represented in [Table:2].

  ::   2. disorders of bone marrowTop

Aplastic Anaemia: A  plastic anaemia is characterised by bone marrow failure and pancytopenia. rGMCSF has been used as an adjunct to existing immunomodulating therapy for the treatment of this condition[9]. This resulted in a 28 fold increase in the peripheral granulocyte / neutrophil counts, fewer febrile days and a decrease in the number of blood transfusions needed. Bone marrow cellularity was increased, though the response of RBCs and platelets was equivocal. rGCSF has also been tried for this condition in various dosage regimens (as shown in [Table:3]) with encouraging results[1].

In the treatment of agranulocytosis, rGCSF has found to be more effective than rGMCSF in elevating the neutrophil counts[11].

Myelodysplasia: The myelodysplastic syndromes are a group of stem cell disorders characterised by maturation defects which result in refractory cytopenias.

Both rGMCSF12 and rGCSF13 have been tried in this condition with promising results [Table:3]. The number of blasts in myelodysplastic patients were found to decrease in the bone marrow, with subsequent increase in the number of mature elements following CSF administration. The possibility of these CSFs stimulating abnormal clones and promoting transformation to acute leukemia is an important consideration and is currently being addressed in phase III trials. Thus patient selection becomes an important criterion for CSF therapy. Those with initial high leukemic burden are not ideal candidates for CSF therapy.

Neutropenia : Both these CSFs have been tried in a variety of neutropenic states such as chronic idiopathic, cyclic and autoimmune neutropenias, Felty's syndrome and in glycogen storage disease[14],[15],[16],[17],[18],[19]. rGCSF was found to increase neutrophil counts more effectively than rGMCSF, which incidentally was found to induce eosinophilia. There is some data to suggest that these two growth factors can be used in combination or sequentially to maximise production of mature neutrophils. [Table:3]

  ::   3. aidsTop

Neutropenia due to the disease per se and due to the deleterious effects of the drugs used such as azidothymidine, which cause myelosuppression, can be alleviated by the use of these two CSFs.

rGMCSF was found to ameliorate leucopenia associated with HIV infection and azidothymidine induced neutropenia without affecting the disease course as determined by p24 antigen levels, CD4: CD8 ratios and recovery of HIV from mononuclear Cells[20].

In similar studies involving administration of rGCSF in patients receiving azidothymidine, neutrophil levels was found to increase [21]. In addition, subcutaneous administration of rGCSF was found to increase erythropoietin levels, erythrocyte progenitors and also haemoglobin levels in patients with advanced HIV infection. The dosages tried in this condition is represented in [Table:3].

  ::   4. adjunct to cancer chemotherapyTop

Cytotoxic drugs that are used to treat various cancers cause myelosuppression and thus cause an increase in the incidence of bacterial and fungal infections. In a number of studies, it was shown that rGMCSF and rGCSF decreased the severity of neutropenia in a dose dependent fashion with a higher neutrophil nadir[22],[23]. Consequently, there was a decrease in antibiotic use. Although the incidence of bacterial/fungal infections did not decrease, the severity of these infections was definitely lesser as compared to the controls. Hence, these growth factors aid in maximising high dose chemotherapy.

  ::   5. acute leukemiasTop

Despite the concern that these CSFs can stimulate proliferation of residual malignant cells, they have widely been used in acute leukemic conditions and myelodysplasia for a variety of reasons. Both these CSFs, when administered along with intensive chemotherapy were found to decrease the period of recovery of neutrophils and incidence of infections [24],[25]. Also, they are found to recruit leukemic blasts to the Sphase and anti-neoplastic agents. Re-growth of leukemic blasts was observed in high risk patients and there was no evidence to prove the same in mild cases of acute myeloid leukemia and refractory multiple myeloma. But this aspect has yet to be studied more carefully and results should be interpreted with caution.

  ::   6. radiation damageTop

rGMCSF has also been tried in the treatment of 8 patients who were accidentally exposed to Caesium 137 in a radiation accident in Brazil where it was found to accelerate bone marrow recovery[26].

  ::   Adverse effectsTop

The assessment of adverse effects of rGMCSF and rGCSF is variable, mainly because it has been used in desperately ill patients with complex patho-physiology.

rGMCSF causes asthenia, rash, malaise and flu like syndrome, all of which are readily reversed once therapy has been withdrawn. Intravenous administration increases the incidence of phlebitis. Cutaneous infections have been reported. Respiratory distress too has reported and so care must be taken while administering it to patients with preexisting respiratory disease. Also, capillary leak syndrome, leading to pleural/ pericardial effusion and hence hypoproteinaemia has also been reported. There is also reason to believe that children tolerate rGMCSF better than adults.

rGMCSF too has been well tolerated in clinical trials. Bone pain, which was readily relieved on cessation of treatment and analgesics, has been reported. Cutaneous eruptions, worsening of preexisting psoriasis and nausea, fever, flulike syndrome and capillary leak syndrome have also been reported. Serum levels of leucocyte alkaline phosphate, lactate dehydrogenase and uric acid may increase. For better understanding of these side effects, they have been listed in composite form in [Table:4].

  ::   Dosage and administrationTop

What remains to be discussed now is the effective dosage and routes of administration of these cytokines in various disease states. Although continuous intravenous infusion has proved efficacious, subcutaneous administration has a definite advantage because the patient can self administer this therapy.

As regards dosage schedule, the relative efficacy of various dosage regimens remains to be evaluated in controlled comparative trials. Optimal dosage and duration of transplant and failure or delay of engraftment are not yet established.

Granulopoiesis stimulated by these CSFs may be very rapid and hence twice weekly complete blood count with differential count is recommended to avoid possible complications.

  ::   Cost of therapyTop

The cost of 10 day therapy with rGMCSF is Rs. 70,000 for autologous bone marrow transplantation. rGCSF is not available in India.

  ::   Future prospectusTop

The use of these cytokines to accelerate granulocyte recovery is a novel therapeutic approach to the management of immunocompromised patients. The ability of these CSF's to intensity anti-neoplastic treatment is an exciting new therapeutic possibility. Although there is still controversy regarding their use in myelodysplasia and in patients with leukaemic clones, their use remains a potential field of exploitation.

In addition to the use of CSFs in these conditions, other potential targets for their use have been envisaged. Myeloid leukaemia stem cells have a high capacity for self-renewal without differentiation leading to progressive accumulation of leukaemic cells in the periphery and bone marrow. Hence a very pertinent clinical use of these CSF's is that they can induct differentiation of these leukemic cells and ultimately extinguish the clone. This has been confirmed in experimental conditions. However, when used in patients, they have been found to stimulate proliferation of residual malignant cells inpatients with acute myeloid leukaemia undergoing cancer chemotherapy and/or marrow transplantation.

Another potential use of these CSFs is that they can be used to overcome growth kinetic resistance of cell cycle Sphase specific cytotoxic agents since they can stimulate proliferation of leukaemic cells and thus render them susceptible to these agents.

We see therefore, that rGMCSF and rGCSF are useful additions in our therapeutic armamentarium.


1 Metcalf D. The granulocyte-macrophage colony stimulating factors. Science 1985; 1622.
2Huebner K, Isobe M, Croce C. The Human Gene Encoding GMCSF is at 5q21q 32, the Chromosome Region Deleted in the 5qAnomaly. Science 1985; 12821285.
3Hollingshead LM, Goa KL. Recombinant Granulocyte Colony - Stimulating Factor (rGCSF). A review of its pharmacological properties and prospective role in neutropenic conditions. Drugs: 1992; 42:300330.
4Grant SM, Heel RC. Recombinant Granulocyte Colony Stimulating Factor (rGCSF). A review of its pharmacological properties and prospective role in the management of myelosuppression. Drugs 1992; 43:516616.
5Naemunaitis J, singer JW, Buckner CD. Use of recombinant human granulocyte macrophage colony stimulating factor in autologous bone marrow transplantation for lymphoid malignancies. Blood 1988; 834836.
6Fouillard L, Gorin NG, Laporate JPh. Recombinant human GMCSF plus the BEAM Regimen instead of autologous bone marrow transplantation. Correspondence Lancet 1989; 8650:1460.
7Tarella C, Ferrero D, Bregni M. Peripheral blood expansion of early progenitor cells after high dose cyclophosphamide and rhGMCSF. Eur J Cancer 1991; 2227.
8Sheridan WP, Morstyn G, Wolf M, Dodds A, Lusk J. Granulocyte CSF and neutrophil recovery after high dose and chemotherapy and autologous bone marrow transplantation. Lancet 1989; 891894.
9Vadhan  Raj's, Buescher S, Broxmeyer HE. Stimulation of myelopoiesis in patients with aplastic anaemia by recombinant human GMCSF. N Engl J of Med 1988; 16281634.
10Kojima S, Fukuda Y,_Miyajima Y, Matsuyama T, Hribe K. Treatment of aplastic anaemia in children with recombinant human granulocyte colony stimulating factor. Blood 1991; 937-941
11Bonilla M, Gillio AP, Ruggeiro M. Effects of recombinant human granutocyte colony stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J of Med 1989; 15741580.
12Vadhan  Caj S, Keating M, Maistre A. Effects of recombinant human GMCSF in patients with myelodysplastic syndromes. N Engl J Med 1987; 15451552.
13Negrin RS, Haeuber DH, Nagler A. Maintenance treatment of patients with myelodysplastic syndromes using recombinant human granulocyte colony  stimulating factor. Blood 1990; 3643.
14Anderson R, Elgefors B, Ridell B, Gisslen M, Kutti J. GM-CSF expands the eosinophilic compartment in chronic idiopathic neutropenia. Eur J Haematol 1990; 315331.
15Vadhan Raj S, Jeha SS, Buesher S. Stimulation of myelopoiesis in a patient with congenital neutropenia: biology and nature of response to recombinant human granulocyte macrophage CSF. Blood 1990; 858864.
16Freund MRF, Luft S, Schober C. Differential effect of GM CSF and GCSF in cyclic neutropenia. Lancet 1990; 336:313.
17Ganser A, Ottomann OG, Erdmann H, Schuiz G, Hoelzer D. The effect of recombinant human granulocyte  macrophage colony stimulating factor on neutropenia and related morbidity in chronic severe neutropenia. Ann Int Med 1989a; 887892.
18Bonilla MA, Gillio AP, Ruggeiro M, Kernan NA, Brochstein JA. Effects of recombinant human GCSF on neutropenia in patients with congenital agranulocytosis. N Engl J Med 1989; 15741580.
19Jakubowski AA, Souza L, Kelly F. Effects of human GMCSF in a patient with idiopathic neutropenia. N Engl J Med 1989; 3842.
20Levine JD, Anan JD, Tessitore JH. Recombinant human GMCSF ameliorates zidovudine induced neutropenia in patients with Acquired Immunodeficiency Syndrome / AIDS related complex. Blood 1991; 31483155.
21Miles SA, Mitsuyasu Rt, Lee K. Recombinant human GMCSF increases circulating burst forming unit  erythroid and red blood cell production in patients with severe human immunodeficiency virus infection. Blood 1990; 21372142.
22Giani AM, Bregni M, Siena S. Recombinant human GMCSF reduces haematologic toxicity and widens clinical applicability of high  dose cyclophosphamide treatment in breast cancer and non Hodgkin's lymphoma J Clin Oncol 1990; 768778.
23Morstyn G, Souza LM, Keech J. Effects of GCSF on neutropenia induced by cytotoxic chemotherapy. Lancet 1982; 667672.
24Bettelheim P, Muhm M, Valent P. GMCSF in combination with cytotoxic chemotherapy in acute myeloid leukernia patients. Bone Marrow Transpl. 1990; 127130.
25Ohno R, Tomonga M, Kobayashi T. Effects of GMCSF after intensive induction therapy in relapsed or refractory acute leukemia. N Engl J Med 1990; 871872
26Buttirini A, Gale RP, Lopes DM. Use of recombinant granulocytemacrophage colony stimulating factor in the Brazil radiation accident. Lancet 1988; 471474.

Friday, June 24, 2022
 Site Map | Home | Contact Us | Feedback | Copyright  and disclaimer