Journal of Postgraduate Medicine
 Open access journal indexed with Index Medicus & ISI's SCI  
Users online: 4326  
Home | Subscribe | Feedback | Login 
About Latest Articles Back-Issues Articlesmenu-bullet Search Instructions Online Submission Subscribe Etcetera Contact
 
  NAVIGATE Here 
  Search
 
 :: Next article
 :: Previous article 
 :: Table of Contents
  
 RESOURCE Links
 ::  Similar in PUBMED
 ::  Search Pubmed for
 ::  Search in Google Scholar for
 ::Related articles
 ::  [PDF Not available] *
 ::  Citation Manager
 ::  Access Statistics
 ::  Reader Comments
 ::  Email Alert *
 ::  Add to My List *
* Registration required (free) 


  IN THIS Article
 ::  Introduction
 ::  Material and methods
 ::  Results
 ::  Discussion
 ::  References

 Article Access Statistics
    Viewed9620    
    Printed225    
    Emailed11    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal


   
Year : 1982  |  Volume : 28  |  Issue : 3  |  Page : 149-59

Coagulation studies in uraemia.







How to cite this article:
Shetty H G, Almeida A A, Sheth S M, Chawla K P, Acharya V N. Coagulation studies in uraemia. J Postgrad Med 1982;28:149


How to cite this URL:
Shetty H G, Almeida A A, Sheth S M, Chawla K P, Acharya V N. Coagulation studies in uraemia. J Postgrad Med [serial online] 1982 [cited 2023 Oct 4];28:149. Available from: https://www.jpgmonline.com/text.asp?1982/28/3/149/5571




  ::   Introduction Top

Bleeding diathesis is an important complication of advanced uraemia and has assumed more significance during recent years.
Riesmann,[24] was the first to recognise renal disease as the cause of haemorrhagic diathesis. This fact is now a well established entity but its pathogenesis is still baffling. The frequency of haemorrhagic disorder in renal failure appears to be related to the degree of uraemia. Although the haemostatic defect in uraemia often is complex and may include thrombocytopenia and minor coagulation abnormalities, it is possible that platelet dysfunction is most consistent and a clinically important feature.[20]
The disorders of coagulation and fibrinolysis have also aroused interest because of their possible pathogenic effect in renal disease with glomerular fibrin deposits and by consequent clinical trials with anticoagulant therapy with beneficial results.[13] Plasma fibrinogen was found to be elevated in uraemic patients.[25] Decreased fibrinolytic activity and increased content of inhibitors of plasminogen activators were found to be common in conservatively treated chronic uraemia.[16]
The evidence of decreased fibrinolytic activity in chronic renal disease was first described by Jacobsson.[12]
The objectives of this study were: (1) to delineate the coagulation abnormalities in various grades of renal failure, (2) to note the effects of short term hemodialysis and peritoneal dialysis on the coagulation abnormalities in cases of acute and chronic renal failure, (3) to find out the alterations in coagulation parameters on long term basis in patients undergoing rehabilitation by regular dialysis treatment and transplantation, and (4) to note the differences between bleeders and non-bleeders with respect to various coagulation parameters.

  ::   Material and methods Top

A total number of 304 patients of either sex was taken for this study. A similar observation was done on 35 normal subjects for comparison. All the patients of renal failure were admitted to the Artificial Kidney Unit, K.E.M. Hospital, Bombay for the management of renal failure.
Clinical details of each patient including details of renal disease, drug therapy, and bleeding tendency were noted. The patients were observed for any abnormal bleeding, skin petechiae, ecchymosis in addition to a complete clinical examination.
Based on the clinical diagnosis, these 304 patients were classified into three major groups (a) acute (total 164, bleeders-76 and non-bleeders-88) (b) chronic (total 113, bleeders-39, nonbleeders-74) and (c) acute on chronic (total 27, bleeders 13 and non-bleeders 14). Dialysis was given to 136 out of 164 cases of ARF (haemodialysis to 28, Peritoneal dialysis to 67 and both dialyses to 41), to 95 out of 113 cases of CRF (haemodialysis to 24, peritoneal dialysis to 28 and both to 43) and to 25 out of 27 cases of acute on chronic renal failure (haemodialysis to 4, peritoneal dialysis to 15 and both to 6).
Coagulation studies in these patients were done prior to dialysis.
Blood was collected by venepuncture and then transferred to different containers containing different anticoagulants. Heparinised blood was used for BUN and creatinine estimation, oxalated blood for fibrinogen estimation and citrated blood for the other coagulation parameters.
The degree of renal failure was measured by their renal chemistry as estimated by plasma urea nitrogen and creatinine. All the patients had their ESR estimated by Westergren method and read at the end of one hour.
The various parameters studied for coagulation data with their normal values are listed below.
1. Bleeding time (BT) (Ivy's method)[11]: 2-5 minutes.
2. Clotting time (CT) (Lee and White's method)[17]: 5-10 minutes.
3. Prothrombin time (FT) (Quick's one stage method)[22]: upto ± 3 seconds of normal.
4. Partial thromboplastin time with Kaolin (PTTK) (Biggs)[1]: 45-60 seconds.
5. Platelet count (Brecher et al method)[2]: 1.5-4.5 lakhs /cmm.
6. Fibrinogen (Tyrosine method) (Lempart)[18]: 200-400 mg%.
7. Euglobulin lysis time (ELT) (Buckell's method)[3]: 90-180 minutes.
All the patients were hospitalised and were treated either conservatively or by haemodialysis and/or peritoneal dialysis. Follow up was done on patients who were on long-term dialysis therapy and recoverable renal failure who were given short term dialysis.

  ::   Results Top

The causative factors responsible for the occurrence of renal failure have been presented groupwise in [Table 1].
The hematological and biochemical values for different parameters in normal persons and in patients in the 3 groups of renal failure and their statistical comparison with normals is presented in [Table 2]. All the parameters were abnormal in renal failure patients when compared with the normals and these differences were statistically significant.
All the three groups of renal failure were further divided into bleeders and non-bleeders and their values for all the parameters are as shown in [Table 2]. There was not much difference in the average values of bleeders and nonbleeders for all the parameters except platelet count where it was found to be low and significant in acute renal failure.
Plasma creatinine values were correlated with some of the coagulation parameters as presented in [Table 3]. A good correlation was possible between fibrinogen and creatinine in acute renal failure patients. Partial thromboplastin time however, showed significant values in both chronic and acute on chronic renal failure groups when correlated with plasma creatinine. Plasma creatinine values in acute renal failure patients could be correlated with euglobulin lysis time. Statistically significant correlation was possible between ESR and fibrinogen in all three groups of renal failure [Table 3].
Recoverable renal failure patients on short term dialysis, and chronic renal failure patients due to end stage renal disease who were on long term dialysis treatment were studied during their illness. Values for the coagulation parameters through the follow up period are presented in [Table 4] and [Table 5]. Chronic renal failure patients themselves were followed up through their disease [Table 4]. Evaluation of the pre and post-transplant coagulation parameters is presented in [Table 6.]

  ::   Discussion Top

The precise cause of bleeding in uraemia still remains ill-understood and probably varies from person to person.
Bleeding time
Willoughby and Crouch[28] found the bleeding time to be prolonged in uraemic patients contrary to the findings of a normal bleeding time as reported by Castaldi et al.[4]
Clotting time
Normal or near-normal clotting times were obtained by Kuhlback[14] in his studies while Guild and co-workers[9] and Larrain and Adelson[15] found prolonged clotting times in uraemic patients.
In the present study, bleeding and clotting times were within the normal range (2.08 ± 0.795 minutes and 9.23 ± 7.603 minutes respectively).
In both acute and chronic renal failure cases, prolonged bleeding times were obtained. Prolonged clotting times were a feature of all the three groups of renal failure being highly significant for acute and chronic renal failure and of moderate significance in acute on chronic renal failure group. No differences existed, however, between the bleeders and nonbleeders in each group.
Prothrombin time
An abnormal prothrombin time was reported in approximately 25 to 50% of uraemic patients.[5] Since it was only slightly prolonged, it was not likely to result in a haemorrhagic tendency. Rath et al[23] found increased prothrombin time in 23 out of 45 cases and these normalised following dialysis.
Partial thromboplastin time
Majority of the uraemic patients studied by Sanchez-Avalos et al,[25] showed shortened partial thromboplastin times.
In the present study, both prothrombin and partial thromboplastin times were found to be prolonged when compared to normals. Comparison of the three groups with normals revealed highly significant differences. Acute renal failure patients had a prolonged partial thromboplastin time of 66.51 ± 15.16 seconds when compared with that of acute on chronic renal failure patients who had a partial thromboplastin time of 58.96 ± 10.76 seconds. Bleeders and non-bleeders did not show any difference in both these parameters. A moderately significant negative correlation was discernible between plasma creatinine levels and partial thromboplastin times in chronic and acute on chronic renal failure groups.
Platelet count
Thrombocytopenia has been mostly incriminated as an important cause of haemorrhagic diathesis in uraemia.[10] This was however, not found to be significantly so, by Chenny and Bonnin.[5] It is now known that there is a qualitative platelet defect in patients with chronic renal failure which is a consequence of the abnormal biochemical environment.[4] [19], [23] That this platelet defect is improved by haemodialysis[27] suggests that low molecular weight compounds usually retained in uraemic subjects play an important role here. In the present study, significantly low platelet counts (1.83 ± 0.348 lakhs/cmm.) were found in renal failure patients when compared with normals (2.69 ± 0.296 lakhs/cmm). Each individual group had significantly lowered counts. Between themselves, no significant difference existed. Only in the acute renal failure group, the bleeders showed a lower platelet count when compared with the nonbleeders. This probably means that a lowered platelet count could be the cause for a bleeding tendency in acute renal failure whereas a qualitative platelet defect probably predisposes to bleeding in other groups. No correlation was possible between platelet counts and creatinine in any group.
Euglobulin lysis time
Decreased fibrinolytic activity in uraemic patients is a known finding.[6], [26] Elevated fibrinogen levels due to depressed fibrinolytic activity are obtained in uraemia. This depressed fibrinolytic activity could be due to decreased production of urokinase or other fibrinolytic activators in the damaged kidney.[21]
This study has found elevated euglobulin lysis time of 267.39 ± 63.109 minutes when compared to that of normals (mean of 189 ± 27.29 minutes). Highly significant differences were noted in the 3 groups as compared with normals. No distinction was possible between the bleeders and non-bleeders.
A linear correlation between euglobulin lysis time and fibrinogen was obtained. Correlation was possible between euglobulin lysis time and plasma creatinine only in acute renal failure group. Euglobulin lysis time was seen to normalise with normalisation of fibrinogen in cases of recoverable renal failure, end stage renal disease on dialysis and in the post transplant stage.
Fibrinogen
In chronic renal failure, raised fibrinogen leves[7], [8] with normal plasminogen levels have been reported.
This study highlights the elevated fibrinogen levels (662.04 ± 197.94 mg%) in cases of renal failure when compared with the normal levels of 403.17 ± 62.85 mg%. All the three groups had highly significant elevations.
Lower values of fibrinogen were noted in acute renal failure group as compared to acute on chronic renal failure group. No difference existed between the bleeders and non-bleeders. Correlation was possible between the fibrinogen and plasma creatinine, only in acute renal failure group. Levels increased with increasing azotemia. This was so in acute renal failure group till creatinine reached 20 mg%. Thereafter, fibrinogen levels fell off. At the level of more than 20 mg%, the non-creatinine chromogens are likely to be adding to the true creatinine and this discrepancy may be due to this factor. In cases of chronic renal failure, fibrinogen increased with creatinine levels till a level of 15 mg% and then it showed a decrease as the creatinine levels increased further. In cases of acute on chronic renal failure, till the level of 10 mg% of creatinine, fibrinogen increased and then fell off and showed a second rise only after creatinine levels exceeded 20 mg%. Recoverable renal failure patients showed decreasing fibrinogen levels paralleling the correction of renal failure. End stage renal disease patients on regular dialysis therapy showed a fall in fibrinogen levels to normal after a varying period of 3-4 months and remained at a higher level of normal throughout the interdialysis phase.
A successful transplant also showed a similar fall in fibrinogen to normal levels. Fibrinogen and fibrinolytic activity after dialysis and transplantation returned to normal. Increased inhibitors of plasminogen activators or antiplasmins may be responsible for the hyperfibrinogenemia in renal failure patients. Adequate dialysis removes these inhibitors.
In the present study, coagulation investigations performed at varying intervals from diagnosis showed a disturbed coagulation pattern with a definite hyperfibrinogenemia varying with the degree of azotemia and decreased fibrinolytic activity. The possible causes of defective haemostasis in this situation are numerous and multiple mechanisms may be simultaneously involved. However, the result of various coagulation tests commonly used in the present study were of enormous value in supporting the abnormality and in the management of any individual case.

  ::   References Top

1.Biggs, R.: "Human Blood Coagulation, Haemostasis and Thrombosis". Blackwell Scientific Publications, Oxford and London, 1972, pp. 609-611.  Back to cited text no. 1    
2.Brecher, G., Schneiderman, M. and Chronkite, E. P.: The reproducibility and constancy of the platelet count. Amer. J. Clin. Path., 23: 15-26, 1953.  Back to cited text no. 2    
3.Buckell, M.: The effect of citrate on euglobulin methods of estimating fibrinolytic activity. J. Clin. Path., 11: 403-405, 1958.  Back to cited text no. 3    
4.Castaldi, P. A., Rosenberg, M. C. and Stewart, J. H.: The bleeding disorder of uraemia. A qualitative platelet defect. Lancet, 2: 66-69, 1966.  Back to cited text no. 4    
5.Cheney, K. and Bonnin, J. A.: Haemorrhage, platelet dysfunction and other coagulation defects in uraemia. Brit. J. Haematol., 8: 215-222, 1962.  Back to cited text no. 5    
6.Edward, N., Young, D. P. G. and Macleod, M.: Fibrinolytic activity in plasma and urine in chronic renal disease. J. Clin. Path., 17: 365-368, 1964.  Back to cited text no. 6    
7.Egeberg, O.: Blood coagulation in renal failure. Scand. J. Clin. Invest., 14: 163-169, 1962.  Back to cited text no. 7    
8.Gross, R., Nieth, H. and Mammen, E.: Blutungsbereitschaft and Gerirmungsstoerungen bei uremie. Klin. Wschr., 36: 107-112, 1958. Quoted by Von Kaulla, K. N., Von Kaulla, E., Wasantapruck, S., Marchiord, T. L. and Starzl, T. E.: Blood coagulation in uraemic patients before and after haemodialysis and transplantation of the kidney. Arch. Surg., 92: 184-191, 1966.  Back to cited text no. 8    
9.Guild, W. R., Bray, G. and Merrill, J. P.: Hemopericardium with cardiac tamponade in chronic uraemia. New Engl. J. Med., 257: 230-231, 1957.  Back to cited text no. 9    
10.Hutton, R. A. and O'Shea, M. J.: Haemostatic mechanism in uraemia. J. Clin. Path., 21: 406-411, 1968.  Back to cited text no. 10    
11.Ivy, A. C., Shapiro, P. F. and Melnick, P.: Bleeding tendency in jaundice. Surg,. Gynec. and Obstet.. 60: 781-784, 1935.  Back to cited text no. 11    
12.Jacobsson, K.: Studies on trypsin and plasma inhibitors in human blood plasma. Scand. J. Clin. Lab. Invest., 7 (Suppl. 14): 55-102, 1955.  Back to cited text no. 12    
13.Kincaid-Smith, P., Laver, M. C. and.: Fairley, K. F.: Dipyridamole and anticoagulants in renal disease due to glomerular and vascular lesions. A new approach to therapy. Med. J. Austr., 1: 145-151, 1970.  Back to cited text no. 13    
14.Kuhlback, B.: The bleeding tendency in chronic renal failure. Acta Med. Scand., 157: 173-177, 1957.  Back to cited text no. 14    
15.15,. Larrain, C. A. and Adelson, E.: The haemostatic defect of uremia. I-Investigations of 3 patients with post-traumatic renal insufficiency. Blood, 11: 1059-1066, 1956.  Back to cited text no. 15    
16.Larsson, S. O., Hedner, U. and Nilsson, I. M.: On coagulation and fibrinolysis in conservatively treated chronic uraemia. Acta Med. ,Scand., 189: 433-441, 1971.  Back to cited text no. 16    
17.Lee, R. I. and White, P. D.: A clinical study of the coagulation time of blood. Amer. J. Med. Sci., 145: 495-503, 1913.  Back to cited text no. 17    
18.Lempert: Tyrosine method of plasma protein determination. Personal communication. Quoted by Varley, H.: "Practical Clinical Biochemistry", `4th Edition, William Heinemann Medical Books Ltd., London and Interscience Books Inc., New York, 1967, pp. 245.   Back to cited text no. 18    
19.Lewis, J., Zucker, M. B. and Fergusson, J. H.: Bleeding tendency in uraemia. Blood, 11: 1073-1076, 1956.  Back to cited text no. 19    
20.Marcus, A. J.: Platelet function. New Engl. J. Med., 280: 1213-1220, 1278-1284 and 1330-1335, 1969.   Back to cited text no. 20    
21.Niewiarowiski, S., Prokopowicz, J., Poplawski, A. and Worowuski, K.: Inhibition of dog fibrinolytic system in experimental tubular necrosis of kidney. Experimentia. 20: 101-103, 1964.  Back to cited text no. 21    
22.Quick, A. J.: The prothrombin in haemophillia and obstructive jaundice. J. Biol. Chem. 109: 73-74, 1935. Quoted from "Human Blood Coagulation, Haemostasis and Thrombosis". Biggs, R. (Ed.). Blackwell Scientific Publications, Oxford, London, 42-53, 1972.  Back to cited text no. 22    
23.Rath, C. E., Mailliard, J. A. and Schreiner, G. E.: Bleeding tendency in uraemia, New Engl. J. Med., 257: 808-811, 1957.  Back to cited text no. 23    
24.Riesmann, D.: Haemorrhages in course of Bright's disease with special reference to the occurrence of a haemorrhagic diathesis of nephritic origin. Amer. J. Med. Sci., 134: 709-716, 1907. Quoted by Rath et al (1957).[23]  Back to cited text no. 24    
25.Sanchez-Avalos, J., Vitacco, M., Molines, F., Penalver, J. and Giananntonio, C.: Coagulation studies in haemolytic uraemic syndrome. J. Paediatr., 76: 538-548, 1970.  Back to cited text no. 25    
26.Sharma, S. D., Singh, G. B., Chugh, K. S. and Chuttani, P. N.: Fibrinolysis in chronic renal pathology. Ind. J. Med. Res., 56: 1777-1782, 1968.  Back to cited text no. 26    
27.Stewart, J. H. and Castaldi, P. A.: Uraemic bleeding. A reversible platelet defect corrected by dialysis. Quart. J. Med., 36: 409-423, 1967.  Back to cited text no. 27    
28.Willoughby, M. L. and Crouch, S. J.: An investigation of the haemorrhagic tendency in renal failure. Brit. J. Hematol., 7: 315-326, 1961.   Back to cited text no. 28    

Top
Print this article  Email this article
Previous article Next article
Online since 12th February '04
© 2004 - Journal of Postgraduate Medicine
Official Publication of the Staff Society of the Seth GS Medical College and KEM Hospital, Mumbai, India
Published by Wolters Kluwer - Medknow